SINGER MELODY EXTRACTION IN POLYPHONIC SIGNALS USING SOURCE SEPARATION METHODS

Jean-Louis Durrieu, Gaël Richard, Bertrand David

Introduction

- Viterbi smoothing algorithm to find the best melody path.

SIGNAL MODEL

- 2 sources: singer voice V and background music M, observed signal X such that: X = V + M,
- Decomposition based on short time Fourier transform (STFT): we consider the N_f first frequency bins of the FFT, the number of frames is denoted T.
- Gaussian modelling of the Fourier transform (FT) Z of the signal z(t). For a centered signal z, wide sense stationary, with FT
- $Z = \rho \exp(i\theta)$, we have: $Z \sim \mathcal{N}_c(0, \sigma^2) \iff p(\rho, \theta) = \frac{\rho}{\pi \sigma^2} \exp\left(-\frac{\rho^2}{\sigma^2}\right)$

Singer voice model

• Gaussian Mixture Model (GMM) with a source-filter modelling. Frame t: one filter σ_k^2 in a dictionary Σ_K and one source $\sigma_{f_0}^2$ in Σ_{F_0} . Conditionally upon state (k, f_0) :

$$V(f,t)|k, f_0 \sim \mathcal{N}_c\left(0, a_k^2(t)\sigma_k^2(f)a_{f_0}^2(t)\sigma_{f_0}^2(f)
ight)$$
 with

 a_k^2 and $a_{f_0}^2$ amplitude coefficients for filter k and source f_0 at frame t. • Extended model: multiple filters and multiple sources to allow more than one note at a time. Every state active at the same time:

$$V(f,t) \sim \mathcal{N}_c(0, \underbrace{\sum_k a_k^2(t)\sigma_k^2(f)}_{V_K(f,t)} \times \underbrace{\sum_{f_0} a_{f_0}^2(t)\sigma_{f_0}^2(f)}_{V_{F_0}(f,t)})$$

• Dictionary: $N_f \times K$ filter matrix Σ_K such that $\Sigma_K(f,k) = \sigma_k^2(f), N_f \times I$ N_{notes} source matrix Σ_{F_0} such that $\Sigma_{F_0}(f, f_0) = \sigma_{f_0}^2(f)$; amplitude matrices A_K and A_{F_0} such that $A_K(k,t) = a_k^2(t)$ and $A_{F_0}(f_0,t) = a_{f_0}^2(t)$; filter and source contribution respectively denoted $V_K = \Sigma_K A_K$ and $V_{F_0} = \Sigma_{F_0} A_{F_0}$.

Proposed model for the source-filter GMM: an instantaneous mixture model.

2008 IEEE International Conference on Acoustics, Speech, and Signal Processing, Las Vegas, March 30 - April 4, 2008

TELECOM ParisTech / CNRS LTCI - 46, rue Barrault - 75634 Paris Cedex 13 - France - e-mail: durrieu@enst.fr

• Estimating the main melody in polyphonic music signals: transcribing the sequence of fundamental frequencies played by the dominant instrument;

• Proposed method: separating the desired source thanks to a source-filter model;

Background music model

Instantaneous mixture of R centered Gaussian sources, with variances σ_r :

$$M(f,t) \sim \mathcal{N}_c(0, \sum_{r=1}^R a_r^2(t)\sigma_r^2(f))$$

with $\Sigma_R(f,r) = \sigma_r^2(f)$ and $A_R(r,t) = a_r^2(t)$; $D_R = \Sigma_R A_R.$

Mixture signal

 $X = V + M \Longrightarrow$

$$X(f,t) \sim \mathcal{N}_c(0, D(f,t)) \text{ with:}$$
$$D = (\Sigma_K A_K) \bullet (\Sigma_{F_0} A_{F_0}) + \Sigma_R A_R$$

Maximum likelihood criterion

- $C(\ell$

PARAMETER ESTIMATION

Set of parameters to be estimated: $\theta = \{\Sigma_K, A_K, A_{F_0}, \Sigma_R, A_R\}$

• Problem close to a non-negative matrix factorisation (NMF) problem, but solved here in a maximum likelihood framework,

• **Criterion** to be minimized:

$$\theta) = -\log(\mathbf{p}_{\theta}(X)) - \ldots = \sum_{f,t} \log\left(D(f,t)\right) + \frac{|X(f,t)|^2}{D(f,t)}$$

• $\sigma_{f_0}^2$ generated with KLGLOTT88.

Iterative algorithm

• Estimating θ : finding the zeros of $\frac{\partial C(\theta)}{\partial \theta_i}$, $\theta_i \in \theta$,

• No closed-form solution \implies a multiplicative gradient approach is used.

Viterbi smoothing

tween:

RESULTS Synthetic data

• Synthetic matrix: random σ_k^2 , only one active state (k, f_0) at each frame, with a simulated melody (chirp and natural singing melody).

• Resulting filters: original filters in red, estimated ones in dashed blue lines.

Main melody estimation on real data

ISMIR'04 C Propos

ISMIR'04 V Propos

Conclusions

- Novel source separation approach for the main melody extraction task;
- Results at the state of the art for main fundamental frequency estimation;
- Promising results in blind audio source separation (main source extraction and "desoloing"), results on *http://www.tsi.enst.fr/~durrieu/en/results_en.html*;
- A Bayesian framework that allows to consider several enhancements such as ARMA modelling of the vocal tract filters, HMM smoothing of the transition between states; the system would also profit from silence detection or vocal/non-vocal segmentation.

Main path finding: dynamic programming with trade-off be-

• maximizing the "energy" of the singer voice signal ($\approx A_{F_0}$), • minimizing the distance between the f_0 .

Main path finding on ISMIR 2004 song "opera_male5"

Opera Songs	Raw Pitch Acc.	Overall Acc.
sed Method	81.2%	70.1%
Dressler	63.0%	64.1%
Poliner	42.6%	47.3%
Ryynänen	64.2%	61.9%
1.0		O 11 A
Vocal Songs	Raw Pitch Acc.	Overall Acc.
vocal Songs sed Method	Raw Pitch Acc. 82.6%	Overall Acc. 70.5%
vocal Songs sed Method Dressler	Raw Pitch Acc. 82.6% 80.4%	Overall Acc. 70.5% 80.6 %
Vocal Songs sed Method Dressler Poliner	Raw Pitch Acc. 82.6% 80.4% 70.7%	Overall Acc. 70.5% 80.6 % 70.1%
Vocal Songs sed Method Dressler Poliner Ryynänen	Raw Pitch Acc. 82.6% 80.4% 70.7% 81.3%	Overall Acc. 70.5% 80.6 % 70.1% 78.6%

Results of our system compared to MIREX'06 participants